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Abstract. This paper discusses key recovery and universal forgery at-
tacks on several MAC algorithms based on universal hash functions. The
attacks use a substantial number of verification queries but eventually
allow for universal forgeries instead of existential or multiple forgeries.
This means that the security of the algorithms completely collapses once
a few forgeries are found. Some of these attacks start off by exploiting
a weak key property, but turn out to become full-fledged divide and
conquer attacks because of the specific structure of the universal hash
functions considered. Partial information on a secret key can be exploited
too, in the sense that it renders some key recovery attacks practical as
soon as a few key bits are known. These results show that while universal
hash functions offer provable security, high speeds and parallelism, their
simple combinatorial properties make them less robust than conventional
message authentication primitives.

1 Introduction

Message Authentication Code (MAC) algorithms are symmetric cryptographic
primitives that allow senders and receivers who share a common secret key to
make sure the contents of a transmitted message has not been tampered with.
Three main types of constructions for MAC algorithms can be found in the
literature: constructions based on block ciphers, based on hash functions and
based on universal hash functions. In this paper we focus on the third class. The
interesting feature of these MAC algorithms is that they are secure against an
opponent with unlimited computing power. Simmons performed seminal work
in this area [35]. The most widely used schemes are constructed following the
Wegman-Carter paradigm [37]: first, the input message is hashed to a short
digest using a universal hash function indexed by a secret key. Such a hash
function has the property that for any two distinct inputs the probability over
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all keys that two inputs have a specific difference is small. Then, the resulting
hash value is encrypted by adding a one-time key. This approach is provably
secure in the information theoretic setting. Brassard proposed a construction of
a computationally secure MAC algorithm from universal hash functions by re-
placing the one-time pad by the output of a pseudo-random function applied to
a nonce [11]. Later work suggests to apply a pseudo-random function directly to
the hash result. A second optimization is to also derive the key for the universal
hash function from a short key; if the universal hash function key is large (it can
be several Kbytes long), this would still be too inefficient; instead one reuses this
key for multiple messages. This paper will show that this opens the way for new
attacks. A large number of computationally secure MAC algorithms derived from
universal hash functions have been proposed following this model. Such MAC al-
gorithms and universal hash functions include UMAC [9], MMH [17], NMH [17],
Square Hash [15], Poly1305-AES [6], CWC [25], GCM/GMAC [30, 31], and a re-
cent polynomial variant by Bernstein [7]. They are seen to be attractive because
of their high speed and the simple constructions and security analysis.

Our contribution. This paper explores the implications of the reuse of key ma-
terial in constructions of MAC algorithms based on universal hash functions
as suggested by Wegman and Carter [37]; our work leads to improved forgery
attacks and shortcut attacks that recover secret keys or parts thereof with the
same complexity as a forgery attack. From a provable security viewpoint, it may
seem desirable that forgery is equivalent to key recovery (since it implies that
a weaker forgery attack can be reduced to the most difficult attack, namely a
key recovery attack). However, key recovery allows for an arbitrary number of
selective forgeries, hence its practical implications are much more serious. While
for some applications it may be acceptable that a MAC forgery occurs from
time to time, being able to recover the secret key as soon as the forgery bound
is reached, is clearly not. It is important to stress that our results do not violate
the proven security bounds on forgery attacks. Key recovery attacks are only
a problem because MAC keys are being reused, which was not the case in the
initial approach for authentication based on universal hash functions.

As their name suggests, universal hash functions guarantee good behavior of
the hash function for any input pair; however, this refers to an average behavior
over all keys and does not guarantee that each key yields a hash function with a
uniform output distribution. For some schemes we identify rather large classes of
weak keys that allow to easily forge authentication tags by swapping two blocks
or by assigning specific values to some message blocks. The use of a weak key
can typically be detected with a single text/MAC pair: it is sufficient to modify
the text and submit a verification query. In principle the parties could check for
the presence of weak keys, but in some cases this will substantially increase the
complexity of the key generation procedure since a large number of combinations
need to be avoided.

While the forgery probability of these schemes can be bounded, we show that
in several MAC algorithms a small number of forgeries leads to if not total at
least partial key recovery, which in turn allows us to create an arbitrary number



Key-Recovery Attacks on Universal Hash Function based MAC Algorithms 3

of forgeries – unlike conventional MAC algorithms such as CBC-MAC [18, 32]
the security of MAC algorithms based on universal hash functions collapses once
a few forgeries are found; sometimes even a single forgery suffices.

For some constructions, we present enhanced key recovery attacks. We guess
part of the key and try to confirm this guess with a MAC verification query.
In schemes with large keys consisting of many words (say of 32 bits each), this
allows for an efficient word by word key recovery. Some of our key recovery
attacks can take into account partial information we may have obtained on a
key, for example if sender and verifier read out a few bytes of the key over the
phone to make sure they are using the right key or when side-channel attacks
reveal some key bits or relations among key bits or their Hamming weight.

A final class of attacks, described for the purpose of completeness, exploits
birthday attacks on special types of messages. If the MAC computation is state-
ful, that is, if the MAC generation algorithm depends on a nonce (a random num-
ber or a counter), these attacks require reuse of nonces by the sender (counter
misuse), which is typically not allowed by the security model. However, one
should expect that in some cases attackers can ‘reset’ senders (think of a bug in
the code or a fault injection that make the software used by the sender crash).
It is an unfortunate property of these MAC algorithms that a limited number
of sender resets results in serious security weaknesses.

Most of our attacks however do not require nonce reuse at all, since we
mostly consider a very simple person-in-the-middle scenario: the sender chooses
a unique nonce and creates a text/MAC pair. The attacker modifies the text
and submits a verification query without changing the tag or the nonce. The
idea behind our attacks is that messages for which the resulting hash values
collide by construction can be substituted without knowing (or even re-using)
the one-time value the hash result was encrypted with. This scenario clearly fits
within the security model of MAC algorithms (see e.g., Bellare et al. [4]).

Some of the results may seem rather straightforward and a few of these
observations have been made earlier on some schemes. However, designers of
universal hash functions typically do not emphasize these weaknesses. To the
best of our knowledge, this paper is the first work that systematically investi-
gates how robust or brittle a broad series of universal hash functions is when
some of the above observations are applied. It also shows how a simple weakness
can easily be developed to a partial key recovery attack with devastating con-
sequences. In particular, we show new findings on the following universal hash
functions and MAC algorithms based thereupon: polynomial hash [6, 13, 8, 22,
25], MMH [17], Square Hash [15], NH/UMAC [9] and its variants VMAC [28] and
WH/WMAC [23]. Due to space limitations, the results on Johansson’s bucket
hashing with a short key size [20] only appear in the long version of this paper.

Related work. McGrew and Fluhrer have observed in [29] that once a single
forgery has been performed, additional forgeries become easier; more specifically,
the forgery probability for MAC algorithms such as CBC-MAC and HMAC
increases cubically with the number of known text-MAC pairs, while for universal
hash functions the forgery probability increases only quadratically.



4 H. Handschuh and B. Preneel

Black and Cochran have analyzed in [10] what happens after a first collision
is observed in the output of the MAC algorithm; they show that subsequent
forgeries or reforgeability becomes easier than expected; for two cases they also
present a key recovery attack. They propose a solution to these reforgeability
attacks in the form of the WMAC construction [10]; however, we will show in
this paper that this construction does not offer any protection against most of
our key recovery attacks.

There is a broad literature on key recovery attacks on MAC algorithms (e.g.,
[34]). The techniques used in this paper are based on classical divide-and-conquer
techniques. Our attacks on GCM/GMAC [30, 31] extend earlier work by Fergu-
son [16] and Joux [21] by considering the case where the one-time pad (more
precisely the addition of the output of a pseudo-random function) is replaced by
the application of a pseudo-random function.

Organization of the paper. In Sect. 2 we provide some background on MAC
algorithms, information theoretic authentication and universal hash functions.
Section 3 describes our attacks and discusses a number of attacks on different
schemes in detail. In Sect. 4 we summarize our results and present some open
problems and directions for future work.

2 Background

2.1 MAC Algorithm

A MAC algorithm consists of three algorithms: 1) a key generation algorithm,
that is, a randomized algorithm that generates a κ-bit key k; 2) a MAC genera-
tion algorithm, that on input a text x and a key k generates an m-bit tag (this
algorithm can be randomized and/or can be stateful); 3) a MAC verification
algorithm, that on input a text and a tag generates an answer true or false (1/0)
(this algorithm is deterministic and typically stateless). The security of a MAC
algorithm can be formalized in concrete complexity following Bellare et al. [5]
(see also [33]).

Definition 1. A MAC algorithm is (ε, t, q, q′, q′′, L) secure if, an adversary who
does not know k, and
– can spend time t (operations);
– can obtain the MAC for q chosen texts;
– can observe the MAC for q′ known texts; and
– can obtain the result of q′′ verification queries on text-MAC pairs of his

choice.
(each text of length L), cannot produce an existential forgery with probability of
success larger than ε.

Here known text-MAC pairs are generated according to a distribution chosen by
the sender, while chosen text-MAC pairs are generated according to a distribu-
tion specified by an adversary.
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There are two generic attacks on MAC algorithms: finding the key by ex-
haustive search, which requires κ/m known text-MAC pairs and on average
2κ−1 (off-line) MAC evaluations and guessing the MAC value, which requires
on average min(2m−1, 2κ−1) MAC verifications. The second attack can be de-
tected easily by the large number of wrong MAC verifications. Iterated MAC
algorithms with an n-bit internal memory succumb to a birthday forgery attack
that requires 2n/2 known text-MAC pairs and min(2n/2, 2n−m) chosen text-MAC
pairs [24, 34].

Typical MAC algorithms used in practice are CBC-MAC (the variants EMAC
[32, 18] and CMAC [19] work for arbitrary length messages) and HMAC [3, 2].

2.2 Information theoretic authentication

Information theoretic authentication was developed in the 1970s by Simmons [35]
and Carter and Wegman [12, 37]. It has several very attractive features. First
and foremost, its security is not based on any complexity theoretic assumption
and holds against opponents with unlimited computing power. In the last decade
researchers have attempted to fine tune the speed of these constructions; the cur-
rent state of the art is that they are up to 15 times faster than CBC-MAC based
on AES or HMAC based on SHA-1. Moreover, if properly designed, these func-
tions can be parallelizable and incremental; the latter property means that if a
local change is made to a large message, the MAC value can be updated in time
that depends on the size of the local update rather than on the overall message
length. Information theoretic authentication also has serious disadvantages: as
for the one-time pad, it is required that the key is used only once. Moreover, in
order to get extreme performance (below 2 cycles/byte in software), very large
keys are required which increases key storage costs and limits key agility. Finally,
note that Simmons’ theory shows that the security level in bits against forgery is
at most half the key size in bits. This paper will demonstrate that these construc-
tions have another disadvantage; however, this disadvantage will only become
apparent if the information theoretic scheme is replaced by a computationally
secure scheme with comparable efficiency.

One of the most elegant examples of an information theoretic authentication
scheme is the polynomial construction (see e.g., [8, 13]). This construction uses
two n-bit keys k and k′, and operates on messages of bitlength ` = t ·n. It starts
by splitting the input message x into t blocks of bitlength n denoted x1 through
xt. The xi, k and k′ are represented as elements of GF(2n). The authentication
function gk,k′(x) can then be described as follows:

gk,k′(x) = k′ +
t∑

i=1

xi · ki .

The probability of sending an acceptable tag without having observed a text/tag
pair (the impersonation probability) equals 2−n, while the probability of forging
a text/tag pair after having observed one pair (the substitution probability) is
equal to (`/n)/2n = t/2n. It has been pointed out that the value of k can be
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reused for multiple messages, as long as the value of k′ is used only once (e.g.,
[13]).

2.3 MAC algorithms based on universal hashing

Following Carter and Wegman [12], a universal hash function is a family of
functions indexed by a parameter called the key with the following property: for
all distinct inputs, the probability over all keys that they collide is small.

Definition 2. Let gk : A −→ B be a family of functions with a =|A| and b =|B|.
Let ε be any positive real number. Then gk is an ε-almost universal class (or
ε-AU class) G of hash functions if

∀x, x′ 6= x ∈ A : Pr
k
{gk(x) = gk(x′)} ≤ ε .

These functions can only be used for message authentication if the output is
processed using another function. If one wants to use a universal hash function
directly for message authentication, a stronger property is required, namely the
hash function needs to be strongly universal [12, 37]. This concept has later on
been generalized by Krawczyk [26].

Definition 3. Let B, ? be an Abelian group. Then gk is an ε-almost ? univer-
sal class (or ε-A?U class) of hash functions if

∀x, x′ 6= x ∈ A and ∀∆ ∈ B : Pr
k
{gk(x) = gk(x′) ? ∆} ≤ ε .

Many simple mathematical operations, such as polynomial evaluation, matrix-
vector product and inner products, yield ε-AU or ε-A?U hash functions.

A MAC algorithm based on universal hash functions consists of two building
blocks: an efficient keyed compression function that reduces long inputs to a fixed
length and a method to process the short hash result and an output transforma-
tion. In practical constructions, the encryption with the one-time pad (addition
of k′) is typically replaced by applying a pseudo-random function with secret key
k′. In this case one obtains computational rather than unconditional security.
Informally, a pseudo-random function family is a function that a computation-
ally limited adversary cannot distinguish with probability substantially better
than 1/2 from a function chosen uniformly at random from all functions with
the same range and domain.

The following compression functions have been proposed in practice. We
consider an input that consists of t blocks of fixed length; if necessary, t will be
assumed to be even. A simple ε-AU hash function is the polynomial evaluation
function over a finite field:

– gk(x) =
∑t

i=0 xi · ki , xi, k ∈ GF(2n) or GF(p).

The following functions are ε-A?U for ? equal to addition modulo 2, 2n or p (this
is clear from the context):
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– polynomial [30, 31, 6]: gk(x) =
∑t

i=1 xi · ki , xi, k ∈ GF(2n) or GF(p);
– MMH [17]: gk(x) =

(((∑t
i=1 xi · ki

)
mod 264

)
mod p

)
mod 232 , xi, ki ∈

Z232 and p = 232 + 15;
– Square Hash [15]: gk(x) =

∑t
i=1 (xi + ki)

2 mod p , xi, ki ∈ Z2w ;
– NMH [37, 17]: gk(x) =

(∑t/2
i=1 (x2i−1 + k2i−1) · (x2i + k2i)

)
mod p , xi, ki

∈ Z232 and p = 232 + 15;
– NH [9]: gk(x) =

(∑t/2
i=1 ((x2i−1 + k2i−1) mod 2w) · ((x2i + k2i) mod 2w)

)
mod

22w, xi, ki ∈ Z2w ;
– WH [23] gk(x) =

(∑t/2
i=1 (x2i−1 + k2i−1) · (x2i + k2i)x(t/2−i)w

)
mod p(x), xi,

ki ∈ GF(2w) (polynomial arithmetic).

Note that one can also cascade multiple ε-AU hash functions followed by an
ε-A?U hash function to obtain more efficient constructions (see Stinson [36]).

For the output transformation, the options listed below can be considered;
this list has been inspired by the slides of [6]. Here fk′() denotes a pseudo-random
function family indexed by the key k′. The first option results in a stateless MAC
algorithm, while the other two assume that the sender keeps the state with the
counter n (which is called the nonce hereafter). The last two options offer a
better security level but one needs to guarantee that n is not reused during the
MAC generation. Nonce reuse during the MAC verification is typically allowed.

Option 1: MACk||k′(x) = fk′(gk(x)) with g ε-AU.
Option 2: MACk||k′(x) = fk′(n) ? gk(x) with g ε-A?U;
Option 3: MACk||k′(x) = fk′(n||gk(x)) with g ε-AU; this variant needs a larger

input of f .

A security analysis of Option 3 (under the name WMAC4) is provided by Black
and Cochran in [10]. Due to space restrictions we omit an analysis of the ran-
domized message preprocessing of Dodis and Pietrzak [14].

The MAC algorithms based on universal hash functions considered in stan-
dards are UMAC [27] and GCM [31]; both follow Option 2. ISO/IEC JTC1/SC27
is currently developing an international standard on MAC algorithms based on
universal hash functions (part 3 of IS 9797).

3 Security Results

In this central section of the paper we present new results on the security of uni-
versal hash function based MAC algorithms. We present a detailed analysis of
the vulnerability of several MAC algorithms with respect to three different sce-
narios. First we briefly describe each of the algorithms and immediately identify
classes of weak keys for each of them. Subsequently we describe more power-
ful universal forgery and key recovery attacks based on partial key information
leakage and the divide-and-conquer principle. Next we describe a key recovery
attack on polynomial hash functions using the birthday paradox.
4 Unfortunately this name has already been given by Kaps et al. to a completely

different MAC algorithm one year earlier [23], cf. Sect. 3.1.
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3.1 Weak keys

In symmetric cryptology, a class of keys is called a weak key class if for the
members of that class the algorithm behaves in an unexpected way and if it is
easy to detect whether a particular unknown key belongs to this class. For a
MAC algorithm, the unexpected behavior can be that the forgery probability
for this key is substantially larger than average. Moreover, if a weak key class is
of size C, one requires that identifying that a key belongs to this class requires
testing fewer than C keys by exhaustive search and fewer than C verification
queries.

The security proofs for universal hash functions bound the average forgery
probability over all keys; this does not cause any problem if the key is used only
once since for most applications a bound on the average rather than the worst
case forgery probability is sufficient. However, if the key of the universal hash
function is reused (which is the case in many current constructions), the fact
that the weak keys are easy to recover can have dramatic implications, as key
recovery allows for arbitrary forgeries.

Polynomial hash functions. We first study the ε-A⊕U polynomial hash function
gk(x) =

∑t
i=1 xi ·ki with k, xi ∈ GF(2n). The forgery probability of this scheme

is equal to t/2n (cf. Sect. 2.2). This function forms the core of the GMAC (Galois
MAC) and GCM (Galois/Counter Mode of operation) constructions for a MAC
algorithm and for authenticated encryption by McGrew and Viega [30]; both
have been standardized by NIST [31]. The GCM construction uses Option 2 of
Sect. 2.3 with the pseudo-random value generated by a block cipher in counter
(CTR) mode. It allows to truncate the output by selecting the leftmost τ bits.

One can also consider polynomials evaluated over GF(p) to take advantage of
fast multiplication hardware available on current processors. The fastest scheme
today is Poly1305-AES of Bernstein [6] that uses p = 2130 − 5.

Clearly k = 0 is a weak key for these polynomial hash functions. In this case
(which appears with probability 2−n respectively 1/p) all messages map to 0
under gk and all messages have the same valid tag, allowing for trivial forgery
attacks: an attacker can take any valid text/MAC pair and substitute the text
by any text of her choice (that is, the forgery probability is 1 independent of
the output transformation). As 2n and p are typically very large, this is not a
realistic threat.

MMH. This inner product construction was introduced by Halevi and Krawczyk
in 1997 [17]. It is an ε-A+U with ε = 1.5/230.

Next we describe two weak key classes for MMH. A first class consists of the
keys for which any ki value is equal to 0. We present a more general description
by considering a universal hash function family gk(x) with k consisting of t
elements ki of the ring R and x consisting of t elements xi of the ring R.

Proposition 1 (type I). If gk(x) is of the form z0

(∑t
i=1 z1(ki, xi)

)
where

z1(ki, xi) is a multiple of ki and z0() is an arbitrary function, then any key k
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for which at least one ki = 0 belongs to a weak key class. The fraction of weak
keys is equal to 1 − (1 − 1/|R|)t ≈ t/|R|. Membership in this class can be tested
with t MAC queries and t verification queries.

The proposition assumes that one asks for a text/MAC pair (if applicable with
a given nonce), one modifies xi, which implies that the MAC value does not
change if ki = 0, and submits a verification query with the modified xi but the
original MAC value. Note that one could reduce the number of text/MAC pairs
to a single one by modifying always the same text/MAC pair. If a nonce is used,
this requires the assumption that the verifier does not check repeating nonces
(which is a standard assumption in MAC algorithms), but our attacks also apply
(with a higher complexity) if the verifier does check for repeating nonces. Hence
this attack is equally effective whether Option 1, 2, or 3 is used. This comment
also applies to the other weak key classes identified below.

A second weak key class is based on the summation and exploits two equal
subkeys:

Proposition 2 (type II). If gk(x) is of the form z0

(∑t
i=1 z2(ki, xi)

)
for any

functions z2(ki, xi) and z0(), then any key k for which there exist i and j such
that ki = kj belongs to a weak key class. The fraction of weak keys is equal to
Rt −R!/(R− t)! ≈ t(t− 1)/(2|R|) (for t small). Membership in this class can be
tested with t(t− 1)/2 MAC queries and t(t− 1)/2 verification queries.

This class can be further generalized: if ki = α·kj (over the integers), this can
be detected as follows: one asks for a message, substitutes the blocks xi and xj

by x′
i = xj/α and x′

j = α ·xi and makes a verification query (this requires that α

divides xj and xi is smaller than 232/α). Type II weak keys correspond to α = 1;
they can be identified by swapping two message blocks. The probability that two
key words satisfy such a relation for a fixed value of α is equal to 1/(α · 232).

Square Hash. This construction was introduced by Etzel, Patel and Ramzan [15]
in 1999. Proposition 2 also results in weak keys for Square Hash.

NMH, NH and WH. The NMH construction by Wegman and Carter is a vari-
ant of MMH described in the same article [17]. It consists of an inner product of
sums of message and key words. NMH requires a large key, but yields the fastest
throughput for long messages on general processors as it can make use of mul-
timedia instructions. NMH* is a variant of NMH in which the inner addition is
done modulo 2w for efficiency reasons, and the result of the modulo p operation
is further reduced modulo 2w. Typical choices are w = 32 and p = 232 + 15.

NH is a yet another variant of NMH that uses additional modular reductions
to improve the performance (this reduction corresponds to ignoring carry bits). It
forms the crucial building block of the UMAC and VMAC algorithms. UMAC [9,
27] was introduced by Black, Halevi, Krawczyk, Krovetz and Rogaway in 1999.
UMAC first applies a universal hash function called UHASH to the message in
order to derive a shorter fixed-length hash value. In order to obtain very high
efficiency, UHASH is constructed of three layers, the first of which is NH, the
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second one is a polynomial hash function over GF(p) and the third one an MMH
construction. In order to obtain a MAC algorithm, Option 2 is selected, similar
to the GCM and Poly1305-AES constructions. VMAC is a variant of UMAC
that is optimized for 64-bit arithmetic [28]. WH is a variant of NH that replaces
elements of Z2w by polynomials (elements of GF(2w)) to reduce the cost of
hardware implementations; the resulting MAC is called WMAC [23].

This class of hash functions has weak keys that are based on symmetry:

Proposition 3 (type III). If gk(x) is of the form z0

(∑t/2
i=1 z3(k2i−1, x2i−1)

·z3(k2i, x2i)
)

for any functions z3(ki, xi) and z0(), then any key k for which
there exists an i such that k2i−1 = k2i belongs to a weak key class. The fraction
of weak keys is equal to 1− (1− 1/|R|)t/2 ≈ t/2|R| (for t small). Membership in
this class can be tested with t/2 MAC queries and t/2 verification queries.

One can also apply Proposition 2 to the t/2 terms in the sum.
We conclude this section with a simple numerical example to illustrate the

impact of these weak keys. If t = 256 and |R| = 232, the keys are 8192 bits long
and the fraction of weak keys for Proposition 1, 2, and 3 is equal to 2−24, 2−17,
and 2−25 respectively; membership in this class can be verified with 256, 32 640,
and 128 queries.

3.2 Divide and conquer attacks and partial key information leakage

In this section we show how the existence of these weak key classes lead us to
discover efficient key recovery attacks and how partial information on the key
can be exploited to further speed up these attacks. The techniques are based
on the construction of inner collisions in the universal hash function (follow-
ing [34]) which can be confirmed with a single message substitution and a single
verification query.

Polynomial hash. We can verify a guess for part of the key (namely k), even if
we do not know the key k′ to the pseudo-random function. Assume for example
that t ≥ 2, k 6= 0 and xi = 0, for 3 ≤ i ≤ t. Then for a given x1 and x2 and a
guess for k, we can choose any x′

2 and compute x′
1 = x1+(x2−x′

2)·k. If the guess
for k is correct, the message x′

1||x′
2||0|| . . . will be accepted as a valid message for

the same tag as message x1||x2||0|| . . .. Hence if this message is accepted, with
high probability the guess for k was correct. It may also be that the guess for k
was wrong but that due to a collision in the pseudo-random function fk′(.) the
verification worked. This case can be ruled out by repeating the attack with a
different message. Note that the attacker constructs here messages based on a
text/MAC pair with a nonce selected by the sender, and the receiver uses each
nonce only once. The GCM mode precludes this divide-and-conquer attack by
deriving k from k′. In SNOW 3G [1] the key k is used only once, hence if the
receiver checks for nonce reuse a correct guess for k can no longer be used.
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Extensions of the Joux attacks on GCM variants. Joux presents an elegant at-
tack on GCM which uses Option 2 with nonce reuse by the sender (the attack
is described in Annex A). Here we show that we can extend his attack to Op-
tion 1 (even if classical encryption in ECB mode is used as suggested by Joux)
or Option 3 (but without nonce reuse); this result shows that some of these
weaknesses are inherent to polynomial hashing over GF(2n) and not to the use
of the one-time pad or CTR mode as in GCM. In this case we have no access
to the individual bits of gk(x) ⊕ gk(x′) for two distinct messages x and x′, but
we can only test equality between the complete n-bit strings gk(x) and gk(x′).
We show that in this case a forgery also leads to key recovery, that is, recovering
a key k requires an expected number of log2(t) + 2n/t verification queries. The
attack goes as follows:

1. obtain a text x and the corresponding MAC value;
2. choose x′ such that the polynomial with coefficients from x − x′ has t dis-

tinct roots (they should also be distinct from all previous roots used in this
algorithm);

3. perform a MAC verification query for x′; if the result is incorrect, go to
step 1;

4. after 2n/t trials on average, you expect a correct MAC value and then you
know that k is one of t values, that is, one of the at most t roots of a
polynomial of step 2;

5. perform another log2(t) MAC verification queries (binary search) to identify
which one of the t roots is equal to k.

This attack is very similar to the key recovery attack by Black and Cochran [10];
the main difference is that [10] first assumes a forgery and then identifies the key,
while here the forgery algorithm is optimized in function of the key recovery. We
make the following comments:

– Exceptionally, this attack would also work with high probability if k is
changed every time as for SNOW 3G [1] (in this case Step 5 would require
nonce reuse by the receiver). The attack would then only be useful if the
receiver could be convinced to reuse a key.

– If n = 128 as for GCM, this attack is clearly impractical. Even if t = 264 this
would still require the verification of a large number of messages of length
264.

– The expected number of multiplications performed by the verification oracle
is about t · 2n/t = 2n, hence one may conclude that this attack is not better
than brute force key search. First, it should be pointed out that this is a
divide-and-conquer attack that applies independently of the key k′ of the
pseudo-random function. Second, this method may help to overcome limita-
tions set on the number of incorrect MAC verifications, as it tests as many
candidate key values as possible with a single verification query.

– It is straightforward to take into account in this attack any information one
may have on the key k, such as the value of the first three bytes, the sum
of any bits etc. Consider n = 80 and t = 218 and assume that we have an
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oracle that gives us s = 24 key bits. Then the attack requires 238 text-MAC
verifications to find the remaining 56 key bits. The same observation also
applies to the remainder of this section, since the attacker has to solve only
very simple equations in the words of the key.

MMH. For the case of MMH, assume that one knows a multiplicative relation
between two key words, say ki = (α · kj) mod p for an α ∈ Zp. Consider w.l.o.g.
messages for which only xi and xj are non-zero. Then if one replaces (xi, xj) by
(x′

i, x
′
j) the hash value will be unchanged provided that x′

j = (xj + (xi − x′
i) ·

α) mod p. We require that the mod264 operation can be ignored, which holds if
xi · ki + xj · kj < 264 and x′

i · ki + x′
j · kj < 264. One way to ensure that the

first inequality is met is by choosing xi, xj < 231; for the second inequality one
chooses x′

i < 231. Then x′
j < 231 with probability approximately 1/2, hence it

is easy to find tuples (xi, xj) and (x′
i, x

′
j) for which these equations hold. Note

that for every value of α one can precompute solutions without knowing the key.
This implies that a single verification query after a message substitution allows
to verify a guess for α. Overall this means that 32 bits of information on the key
can be found with approximately 232 verification queries; subsequently arbitrary
forgeries are possible. Recovery of the t key words requires t · 232 verification
queries.

Square Hash. Square hash has the weakness that one can verify a guess for any
key word ki of w bits with a single verification query: it suffices to modify xi into
x′

i = (−2ki − xi) mod p. This follows immediately from the fact that (−x)2 ≡
x2 mod p. This attack requires approximately p MAC verifications to find a
single key word and t · p MAC verifications to identify the correct key (a divide-
and-conquer approach). Note that this attack could be precluded by ensuring
that the hash function is restricted to input values less than p/2. This attack is
simpler than the collision-based key recovery attack of Black and Cochran [10].

NMH, NH and WH. The following attack applies to all these constructions: it
is sufficient to find a message for which one factor becomes 0 (e.g., for NMH
(x2i−1 + k2i−1) = 0 mod p and for NH (x2i−1 + k2i−1) = 0 mod 2w); in this case
gk(x) is independent of x2i. This attack requires p or 2w text-MAC queries and a
similar number of MAC verification queries to find a single key word ki. With a
divide-and-conquer approach recovering the complete key requires t times more
work.

A slightly more efficient attack is described next. Assume that one knows an
additive relation between two key words, say k2i = (k2i−1+∆) mod 2w for a ∆ ∈
Z2w . Then if one replaces (x2i−1, x2i) by ((x2i+∆) mod 2w, (x2i−1−∆) mod 2w)
the hash value will be unchanged. This implies that a single verification query
allows to verify a guess for ∆. By trying all 2w values of ∆, it follows that with
2w verification queries one finds a relation between k2i and k2i−1. This relation
is sufficient to perform subsequent forgeries. In order to find k2i (and k2i−1),
one can apply the method of the previous paragraph; recovering the t key words
requires only t · 2w verification queries and t · 2w−2 MAC queries. Alternatively
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one can choose x2i−1 = x2i + ∆ (which makes the two factors equal) and apply
the techniques of Square Hash with chosen texts.

If these functions are used with large word lengths (64 bits or more such as
for VMAC), these observations do not pose a serious problem. However, NH has
variants with w = 32 (for UMAC) and WH is being proposed with values of w
equal to 16, 32 and 64. If one wants to obtain higher security levels, one can use
two parallel instantiations and in this case the function will behave as if the word
length was twice as large. However, if one wants to use single instantiations of
the small word sizes for very high performance, a security level against forgery
of c · 2−w for a small constant c may be acceptable, but a partial key recovery
attack with complexity on the order of 2w clearly is not.

The above attacks shed a new light on the security of UMAC; even if the
UMAC RFC [27] warns to restrict the number of MAC verifications, the docu-
ment explicitly states that no key recovery attack is known that can exploit a
forgery.

In order to conclude this section, we point out that the above attacks (except
for the attack by Joux on GCM) apply to the three options and do not require
nonce reuse.

3.3 Birthday collision attacks on polynomial hash functions

In this section we consider attacks on polynomial hash functions; these attacks
require nonce reuse by the sender for Option 2 and 3 of Sect. 2.3; this implies
that these attacks violate the standard security assumptions for these MAC
algorithms. However, it is important to note that Option 1 has no nonce, hence
it is obvious that for this case the attacks stay within the model.

If nonces are reused in polynomial hash schemes over GF(p), it is easy to
recover the key k (Bernstein [6] is also very clear about the fact that in this case
no security guarantees can be provided).

For polynomial hash over GF(2n) and GCM, if we assume that somehow the
sender can be convinced to reuse a nonce, or if we are using Option 1, we can
enhance our previous attack by using the special messages of the Ferguson attack
(we refer the reader to Annex A for a description of the original attack). As we
no longer have access to the individual bits of gk(x) ⊕ gk(x′) for two distinct
messages x and x′, we can only test equality between the complete n-bit strings
gk(x) and gk(x′). The birthday paradox allows to extend the attack.

1. consider messages with xi = 0 except if i = 2j for some j ≥ 0. As squaring
in GF(2n) is a linear operation in GF(2n), the hash function becomes linear
over this subset of inputs, hence we can write the bits of the hash result as
follows:

gk(x)[.] =
∑

i∗,j∗,u∗
xi∗[j∗] · k[u∗] .

2. by guessing the linear combination of s (1 ≤ s < n) well-chosen bits of
the key k, we can generate a set of λ messages for which the hash result is
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restricted to a subspace of size 2n−s (e.g., the first s bits are equal to 0) (for
details, see [16]);

3. now collect λ = 2(n−s)/2+1 messages/MAC pairs (with the same nonce!)
resulting in 2 collisions for the MAC value; each collision yields n− s linear
equations for the remaining n− s key bits.

If we choose n = 80, s = 24, then n − s = 56: 229 messages yield 2 collisions,
resulting in 112 linear equations in the remaining 56 key bits. Note that even
in the limit case of s = 0, this attack can recover the key k in 2n/2+1 chosen
text/MAC pairs independently of k′.

4 Conclusion and Directions for Further Work

Table 1 presents an overview of the attacks. The security analysis of the many
schemes and variants under multiple attacks is rather complex; we attempt here
to summarize the main points. All universal hash functions except for the poly-
nomial hash functions have large classes of weak keys, which have more serious
implications than what was believed so far. All the universal hash functions that
are based on key words that are substantially smaller than the output size (e.g,
MMH, Square Hash and NMH with w-bit subkeys) allow – in spite of their large
internal keys – for efficient divide-and-conquer key recovery attacks with ap-
proximately t · 2w MAC verifications. While it is well understood that 2w MAC
verifications allow for a single forgery and – in the case of key reuse – for multiple
forgeries [10], the implications of a key recovery attack are much more serious as
they allow for arbitrary forgery later on. Most of the hash functions (except for
polynomial hashing over GF(p)) allow for improved attacks if an oracle provides
partial information on the secret key. It is important to stress that most of our
attacks work for the three options (with and without nonces) and do not require
nonce reuse: they are thus completely within the standard model for MAC algo-
rithms. It is surprising that the more expensive Option 3 (called WMAC in [10])
does not offer an increased protection against key recovery attacks.

Overall, the polynomial hash functions over GF(p) seem to present fewer
problems, but they are extremely vulnerable to nonce reuse, in particular if
Option 2 (addition of a pseudo-random string) is used.

While universal hash functions have very attractive performance and provable
security, our attacks demonstrate that most published MAC algorithms based on
universal hash functions can be very brittle because of their simple combinatorial
properties. Even within the security model, key recovery attacks are very efficient
in spite of the large internal keys. Moreover, for those schemes for which no
key recovery attack exists, a small violation of secure usage principles results
in a collapse of security. This can be noted from very strong warnings in the
specifications about nonce reuse and the detection of a large number of incorrect
MAC verifications. A similar comment holds for partial key leakage (which can
occur e.g., under side channel attacks). As it is very difficult to predict how a
cryptographic algorithm will be used and abused, this is a highly undesirable
property.
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Table 1. Summary of our findings on MAC algorithms based on universal hash func-
tions; if the key consists of small words, a word length of w is assumed. The third
column indicates which part of k one needs to guess to allow for a verification with
a single query; the fourth column indicates whether our attacks can exploit partial
information on the key; the last column indicates the applicability of the new birthday
attacks presented in this paper.

number of divide and partial key new birthday
weak keys conquer attacks information attack

Polynomial hash GF(2n) 1 k only yes yes
Polynomial hash GF(p) 1 k only ?
Bucket hashing with small key type I/II subkey kj yes yes
MMH type I/II w-bit subkey ki yes
Square Hash type II w-bit subkey ki yes
NMH/NH/WH type II/III w-bit subkey ki yes

We present the following recommendations for MAC algorithms based on
universal hash functions:
– Avoid reusing keys; while this may not be an option for schemes such as

UMAC, for the polynomial hash functions, the overhead to generate a new
value k for the universal hash function is quite small and brings a substantial
increase of security and robustness as it will render most key recovery attacks
useless; this approach is taken by SNOW 3G [1].

– In environments where side channel attacks are a concern, additional mea-
sures need to be taken which may negatively influence the performance.

– Sender and receiver need to guarantee/check uniqueness of nonces. The re-
quirement for the sender seems to be more stringent in particular if a crash
of the device needs to be considered. Appropriate implementation measures
are necessary, such as storing counters in non-volatile memory. At the re-
ceiver side, restricting the number of MAC verifications with a single key
seems more stringent than checking uniqueness. In any case, if random num-
bers are used to instantiate nonces, checking uniqueness for the receiver is
problematic.

As an alternative for universal hash function based MACs, we recommend
an AES-based scheme such as EMAC [18, 32]. It is somewhat slower but more
“robust” in the following sense:
– Internal collisions (264 texts) lead to forgeries, but not to key recovery.
– There is no known way to use an oracle that gives access to 32 or 64 key bits

to speed-up key recovery by more than 232 or 264 operations.
– The algorithm benefits of a faster key setup.

We are currently investigating other universal hash functions, such as the new
function proposed by Bernstein [7]. We also believe that it would be valuable
to formalize the “regularity” of a universal hash function which could alleviate
concerns related to weak keys.
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A The Joux and Ferguson Attacks on GCM

The Joux attacks on GCM. In his comment on the April 2006 draft of the
NIST GCM mode [21], Joux presents a very elegant key recovery attack if the
polynomial hash function is used with Option 2 under the condition of nonce reuse
by the sender. The attack requires two text/MAC pairs with the same nonce and
computes the exor of the tags, which is equal to gk(x) ⊕ gk(x′) (the encryption
with a one-time pad or pseudo-random function cancels out). This is a polynomial
of degree at most t for which k is one of the roots. As there are at most t roots,
it is easy to recover k, either by asking for a second set of text/MAC pairs (as
proposed by Joux) or by using the technique of the first paragraph of Section 3.2;
the latter approach requires at most t text/MAC pairs and t MAC verification
queries (but without nonce reuse). Joux also shows that a small discrepancy in the
specification between the May 2005 draft of [31] and the original GCM proposal
of [31] leads to an efficient recovery of k without nonce reuse; this issue is solved
in the June 2007 draft of [31]. In his comments, Joux suggests that “replacing
the counter encryption for MACs by the classical encryption with the block cipher
usually used with Wegman-Carter MACs seems a safe option.” He also proposes a
further mitigation of the security risks by using a stronger key derivation and by
using separate keys for the different components of GCM.

The Ferguson attack on GCM. Ferguson points out another clever attack on
GCM that exploits the arithmetic properties GF(2n) with the truncation option.
His attack consists of the following steps:
1. consider messages with xi = 0 except if i = 2j for some j ≥ 0. As squaring

in GF(2n) is a linear operation in GF(2n), the hash function becomes linear
over this subset of inputs (that is, the hash computation can be written as a
matrix-vector product over GF(2));

2. for a single chosen text x of this form, modify the message into x′ (again of
the same form), where x′ is chosen such that the first s ≤ τ bits of gk(x) and
gk(x′) are equal, independent of the value of k. This can be achieved with some
simple linear algebra with the constraint that s < log2(t);

3. submit x′ for verification: the probability of a successful forgery is 1/2τ−s.
Moreover, a successful forgery results in τ − s additional linear equations in the
bits of k, which makes it easier to obtain an additional forgery and thus even more
information on the key.
Note that the GCM final standard [31] still uses Option 2 (in order to save a single
encryption and avoid pipeline stalls) and still allows for truncation. On the other
hand, it adds very explicit warnings about the risks of nonce reuse and truncation
(in Appendices A and C respectively).


